Toolbox

T1: Eigenvalues and Eigenvectors

Reminder: This post contains 2819 words · 9 min read · by Xianbin

This post presents basics about eigenvalues and eigenvectors.

Eigenvalues and Eigenvectors

For a matrix ACn×nA \in \mathbb{C}^{n\times n}, scalars λ\lambda and vectors xn×1\mathsf{x}_{n\times 1} satisfying Ax=λxA\mathsf{x} = \lambda \mathsf{x} are eigenvalues and eigenvectors of AA. The set of distinct eigenvalues, δ(A)\delta(A) is the spectrum of AA.

The characteristic polynomial of An×nA_{n\times n} is p(λ)=det(AλI)p(\lambda) = \text{det}(A-\lambda \textup{I}).

Let {x0xN(AλI)}\{ x \neq 0 \mid x \in N(A -\lambda \textup{I})\} be the set of all eigenvectors associated with eigenvalues λ\lambda. We say that N(AλI)N(A - \lambda \text{I}) is the eigenspace for AA.

Definition\textbf{Definition}[Spanning Sets]. For a set of vectors S={v1,,vt}\mathcal{S} = \{v_1,\ldots, v_t\}, the subspace

span(S)={α1v1++αtvt}span(\mathcal{S}) = \{\alpha_1v_1+\cdots+\alpha_t v_t\}

that forms all linear combinations of vectors of S\mathcal{S} is called the space spanned by S\mathcal{S}.

Symmetric Function sks_k

We define the kk-th symmetric function of λ1,λ2,,λn\lambda_1,\lambda_2,\ldots,\lambda_n to be the sum of the product of eigenvalues multiplication for kk times, i.e.,

sk=1i1<<iknλi1λiks_k = \sum_{1\leq i_1<\cdots<i_k \leq n}\lambda_{i_1}\ldots \lambda_{i_k}

Example: n=3n = 3

s1=λ1+λ2+λ3s_1 = \lambda_1 + \lambda_2 + \lambda_3 s2=λ1λ2+λ1λ3+λ2λ3s_2 = \lambda_1\lambda_2+\lambda_1\lambda_3 + \lambda_2\lambda_3 s3=λ1λ2λ3s_3 = \lambda_1\lambda_2\lambda_3

We expand p(λ)=det(AλI)=a11λa12a1na21a22λa2nan1an2annλp(\lambda) = \text{det}(A-\lambda\text{I}) =\left \lvert\begin{matrix} a_{11}-\lambda & a_{12} &\cdots & a_{1n}\\ a_{21} & a_{22}-\lambda &\cdots &a_{2n}\\ \vdots & \vdots & \cdots & \vdots\\ a_{n1} & a_{n2}& \cdots & a_{nn}-\lambda \end{matrix} \right \rvert

as follows.

p(λ)=(1)n[λn+c1λn1++cn1λ+cn]p(\lambda) = (-1)^n[\lambda^n+c_1\lambda^{n-1}+\cdots+c_{n-1}\lambda+c_n]

By setting λ=0\lambda = 0, we have:

Proposition 1: cn=(1)ndet(A)c_n = (-1)^n \text{det}(A).

Now, let us see the value of c1c_1.

p(λ)=(a11λ)(annλ)+i=2n2ciλni+cnp(\lambda) = (a_{11}-\lambda)\cdots(a_{nn}-\lambda)+\sum_{i=2}^{n-2}c'_i\lambda^{n-i}+c'_n

It is easy to see that we only need to care about (a11λ)(annλ)(a_{11}-\lambda)\cdots(a_{nn}-\lambda) to find c1c_1.

polynomial

We can see that there are nn ways of obtaining (1)n1λn1(-1)^{n-1}\lambda^{n-1}.

Then

c1=(1)n1/(1)ni=1naii=trace(A)c_1 = (-1)^{n-1}/(-1)^n \cdot \sum_{i=1}^n a_{ii} = -\text{trace}(A)

Next,

Theorem\textbf{Theorem}[The fundamental Theorem of Algebra]. If P(x)P(x) is a polynomial of degree, then the equation P(x)=0P(x) = 0 has exactly nn roots.

By the above theorem,

p(λ)=(1)n(λλ1)(λλn)=(1)n[λnλn1i=1nλi++λnk(i1,,ik)δkj=1kλij]\begin{align} \begin{aligned} p(\lambda) = (-1)^n(\lambda-\lambda_1)\cdots(\lambda-\lambda_n) \\ =(-1)^n\left[ \lambda^n - \lambda^{n-1}\sum_{i=1}^n \lambda_i+\cdots + \lambda^{n-k}\sum_{(i_1,\cdots,i_k) \in \delta_k}\prod_{j=1}^k \lambda_{i_j} \right] \end{aligned} \end{align}

So, c1=i=1nλic_1 = -\sum_{i=1}^n \lambda_i.

Since c1=trace(A)c_1 = -\text{trace}(A), we obtain that

trace(A)=i=1nλi\text{trace}(A) = \sum_{i=1}^n \lambda_i

Also, we find that sk=(1)kcks_k =(-1)^k c_k.

i=1nλi=(1)ncn\prod_{i=1}^n \lambda_i = (-1)^n c_n.

By setting λ=0\lambda = 0, we obtain

det(A)=(1)ncn=i=1nλi\text{det}(A) = (-1)^n c_n =\prod_{i=1}^n \lambda_i

Reference

[1]. Meyer, Carl D. Matrix analysis and applied linear algebra. Society for Industrial and Applied Mathematics, 2023.