Toolbox

T1: More than Counting

Reminder: This post contains 484 words · 2 min read · by Xianbin

A Small Problem

Question 1.\textbf{Question 1.} If you have nn elements you wish to divide into yy distinct piles of size n1,n2,,nyn_1,n_2,\ldots,n_y, how many possibilities?

The answer is

(nn1,n2,,ny)=n!n1!n2!,ny!{n \choose {n_1,n_2,\ldots,n_y }}= \frac{n!}{n_1!n_2!\ldots,n_y!}

A Higher Binomial Theorem

Multinomial Formula\textbf{Multinomial Formula}. For all n,yNn,y \in \mathbb{N}, for all pairwise commuting variables x1,,xyx_1,\ldots,x_y, we have (x1+x2++xy)n=n1,,ny:i=1yni=n(nn1,,ny)x1n1x2n2xyny(x_1+x_2+\ldots+x_y)^n = \sum_{n_1,\ldots,n_y: \sum_{i=1}^y n_i = n}{n \choose {n_1,\ldots,n_y}}x_1^{n_1}x_2^{n_2}\ldots x_y^{n_y}