Toolbox

C1: Distributional Disjointness (Non information theory)

Reminder: This post contains 8377 words · 24 min read · by Xianbin

This post is based on [1]. For a distribution μ\mu, we use Dϵμ(F)D^\mu_\epsilon(F) to denote the ϵ\epsilon-error distributional communication complexity that is the minimum cost of deterministic protocol Π\Pi such that Pμ[Π(X,Y)=F(X,Y)]1ϵ.P_\mu[\Pi(X,Y)=F(X,Y)] \geq 1-\epsilon. On the other hand, the cost if for the best deterministic protocol that gives the correct answer for FF on at least (1ϵ)(1-\epsilon) fraction of all inputs of X×YX \times Y given μ\mu.

We say that DISJ(X,Y)=1DISJ(X, Y) = 1 if and only if XY=X \cap Y = \emptyset. We will prove the following theorem.

Theorem 1

Theorem 1\textbf{Theorem 1}. There exists a distribution μ\mu, such that Dϵμ(DISJn)Ω(n)D^\mu_\epsilon(DISJ_n)\geq \Omega(n) where ϵ<0.01\epsilon < 0.01.

Notice\color{red}\textbf{Notice} that μ\mu is not a product distribution (i.e., μX(x)μY(y)=μ(x,y))\mu_X(x)\mu_Y(y) = \mu(x,y) ) because the common choice of i. Therefore, it does not violate the O~(n)\tilde O(\sqrt{n}) algorithm for DISJ.

Proof\textbf{Proof}. We first give the distribution μ\mu. Let n=4t1\color{blue} n = 4t- 1 and let π=(SX,SY,{i})\pi = (S_X, S_Y, \{i\}) be an arbitrary partition of [n][n] such that SX=SY=2t1\lvert S_X\rvert = \lvert S_Y\rvert = 2t-1 (i[n]i\in[n]). Now, let us construct the input for the first player, Alice. We select tt elements from SX{i}S_X \cup \{i\} uniformly at random as XX. For the player Bob, we select tt elements from SY{i}S_Y\cup \{i\} uniformly at random as YY. We know that with probability 1/21/2, we can select the ii in the input. For simplicity, we use X0X_0 to denote the input XX such that i∉Xi \not \in X. We use X1X_1 to denote the input XX such that iXi\in X. Similarly, we define Y0Y_0 and Y1Y_1.

In the above distribution μ\mu, we have four types of input, i.e., (X1,Y1)(X_1,Y_1) (we use II to denote the set of such an input) and other three cases (X0,Y0),(X0,Y1),(X1,Y0)(X_0,Y_0), (X_0, Y_1), (X_1, Y_0) (we use JJ to denote such inputs) . It is easy to find that μ(J)=3/4\mu(J) = 3/4.

The following lemma is the key to proving this theorem.

Lemma 1.\textbf{Lemma 1.} Given any rectangle RR, we have μ(RJ)αμ(RI)2δn\color{blue} \mu(R\cap J) \geq \alpha \mu(R\cap I) - 2^{-\delta n} where α,δ\alpha,\delta are some constants.

Suppose Dϵμ=kD^\mu_\epsilon = k. Then, protocols will partition {0,1}n×{0,1}n\{0,1\}^n \times \{0,1\}^n into at most 2k2^k rectangles. Let R1,R2,,R\color{blue} R_1,R_2,\ldots,R_\ell denote the monochromatic rectangles with value1\color{blue} \text{rectangles with value} 1 where =2k\ell = 2^k. Because we allow ϵ\epsilon error for protocols, μ(i=1RiI)34ϵ\mu(\cup_{i=1}^\ell R_i \cap I) \geq \frac{3}{4} - \epsilon and μ(i=1RiJ)ϵ\mu(\cup_{i=1}^\ell R_i \cap J) \leq \epsilon (Recall that μ(I)=3/4\mu(I) = 3/4 and μ(J)=1/4\mu(J)=1/4. Notice that here JJ is the set of announcing 0, so the probability of announcing 1 is 0).

Thus, we have

ϵμ(i=1(RiJ))i=1(αμ(RiI)2δn\epsilon \geq \mu(\bigcup_{i=1}^\ell (R_i\cap J)) \geq \sum_{i=1}^\ell (\alpha \mu(R_i \cap I) - 2^{-\delta n} α(34ϵ)2kδn\geq \alpha(\frac{3}{4}-\epsilon) - 2^{k-\delta n}

So, kΩ(n)k\geq \Omega(n).

Proof of Lemma 1.

Step 1> Generate random input (x0,y0),(x1,y1)\color{blue}{\text{Step 1> Generate random input } (x_0,y_0), (x_1,y_1)}

Let π:=(SX,SY,{i})\pi:=(S_X,S_Y,\{i\}) be the random partition of [n][n] mentioned above. Recall the process of π\pi, XX and YY are independent.

Given π\pi, we define the following. Let R=X×YR = \mathbb{X}\times \mathbb{Y} be a rectangle where X,Y2[n]\mathbb{X,Y}\subseteq 2^{[n]}.

pX(π):=P[XXπ]pX0(π):=P[X0Xπ]=P[XXπ,i∉X]pX1(π):=P[X1Xπ]=P[XXπ,iX]pY(π):=P[YXπ]pY0(π):=P[Y0Xπ]=P[YXπ,i∉Y]pY1(π):=P[Y1Xπ]P[YXπ,iY]\begin{aligned} p_{X}(\pi):=\mathcal{P}[X\in \mathbb{X} \mid \pi] \\ p_{X_0}(\pi):= \mathcal{P}[X_0\in \mathbb{X} \mid \pi] = \mathcal{P}[X\in \mathbb{X} \mid \pi, i\not \in X] \\ p_{X_1}(\pi):=\mathcal{P}[X_1\in \mathbb{X} \mid \pi] = \mathcal{P}[X\in \mathbb{X} \mid \pi, i\in X]\\ p_{Y}(\pi):=\mathcal{P}[Y\in \mathbb{X} \mid \pi] \\ p_{Y_0}(\pi):= \mathcal{P}[Y_0\in \mathbb{X} \mid \pi] = \mathcal{P}[Y\in \mathbb{X} \mid \pi, i\not \in Y]\\ p_{Y_1}(\pi):=\mathcal{P}[Y_1\in \mathbb{X} \mid \pi] \mathcal{P}[Y\in \mathbb{X} \mid \pi, i\in Y]\\ \end{aligned}

Then, by the property of rectangle and XYX \perp Y, we have

P[(X0,Y0)X×Y]=E[pX0(t)pY0(t)]P[(X1,Y1)X×Y]=E[pX1(t)pY1(t)]\begin{aligned} \mathcal{P}[(X_0,Y_0)\in \mathbb{X}\times \mathbb{Y}] = E[p_{X_0}(t)p_{Y_0}(t)]\\ \mathcal{P}[(X_1,Y_1)\in \mathbb{X}\times \mathbb{Y}] = E[p_{X_1}(t)p_{Y_1}(t)] \end{aligned}

Now, let us rewrite elements of the goal of our proof.

μ(IR)=14Eπ[pX1(π)pY1(π)]μ(JR)=34Eπ[pX0(π)pY0(π)]\begin{aligned} \mu(I\cap R) = \frac{1}{4}\mathbb{E}_\pi[p_{X_1}(\pi)p_{Y_1}(\pi)]\\ \mu(J\cap R) = \frac{3}{4}\mathbb{E}_\pi[p_{X_0}(\pi)p_{Y_0}(\pi)] \end{aligned}

To prove Lemma 1, we need to connect pX0(π)pX1(π)p_{X_0}(\pi)p_{X_1}(\pi) and pY0(π)pY1(π)p_{Y_0}(\pi)p_{Y_1}(\pi) together. Intuitively speaking, they should be close. It is not hard to find the connection.

Step 2> Define Bad Events\color{blue}{\text{Step 2> Define Bad Events}}

To build the connection, we define bad events as follows.

Bad Event\textbf{Bad Event}. We say a partition π=(SX,SY,{i})\pi=(S_X, S_Y,\{i\}) is XX-bad if

pX1(π)<13pX0(π)2ϵn (1)\color{blue} \begin{aligned} p_{X_1}(\pi) < \frac{1}{3}p_{X_0}(\pi) - 2^{-\epsilon n} \text{ (1)} \end{aligned}

Claim 1\textbf{Claim 1}. Let Bad(π)Bad(\pi) be the indicator of the event π=(SX,SY,{i})\pi=(S_X,S_Y,\{i\}) being Bad. We have Eπ[pX0(π)pY0(π)Bad(π)]45Eπ[pX0(π)pY0(π)] (2)\color{blue} \mathbb{E}_\pi[p_{X_0}(\pi)p_{Y_0}(\pi)Bad(\pi)] \leq \frac{4}{5} \mathbb{E}_\pi[p_{X_0}(\pi)p_{Y_0}(\pi)] \text{ (2)}

Now, we have (using Inequality (1) and (2)).

P[(X1,Y1)R]=Eπ[pX1(π)pY1(π)]Eπ[pX1(π)pY1(π)(1Bad(π)]Eπ[(pX0(π)32ϵn)(pY0(π)32ϵn)(1Bad(π)]αEπ[pX0(π)pY0(π)]2Ω(n)=αP[(X0,Y0)R]2Ω(n)\begin{aligned} \mathcal{P}[(X_1,Y_1)\in R] = \mathbb{E}_{\pi}[p_{X_1}(\pi) p_{Y_1}(\pi)] \\ \geq \mathbb{E}_{\pi}[p_{X_1}(\pi) p_{Y_1}(\pi)(1-Bad(\pi)]\\ \geq \mathbb{E}_{\pi}[(\frac{p_{X_0}(\pi)}{3}-2^{-\epsilon n}) (\frac{p_{Y_0}(\pi)}{3}-2^{-\epsilon n})(1-Bad(\pi)]\\ \geq \alpha' \mathbb{E}_\pi[p_{X_0}(\pi)p_{Y_0}(\pi)]-2^{-\Omega(n)} \\ = \alpha'\mathcal{P}[(X_0,Y_0)\in R] - 2^{-\Omega(n)} \end{aligned}

Therefore,

4μ(JR)4α3μ(IR)2Ω(n)4\mu(J\cap R) \geq \frac{4\alpha'}{3}\mu(I\cap R)-2^{-\Omega(n)}\\

Thus,

μ(JR)α3μ(IR)2Ω(n)=αμ(IR)2Ω(n)\mu(J\cap R) \geq \frac{\alpha'}{3}\mu(I\cap R)-2^{-\Omega(n)}\\ =\alpha\mu(I\cap R)-2^{-\Omega(n)}

Appendix

Proof of Claim 1.

Some fact: pX0(π)+pX1(π)=2p(π)p_{X_0}(\pi) + p_{X_1}(\pi) = 2p(\pi). To prove Claim 1, we need to prove the following Claim 1.1.

Claim 1.1\textbf{Claim 1.1}. For any set SY[n] such thatSY=2t1S_Y \subseteq [n] \text{ such that} \mid S_Y \mid = 2t - 1, P(π is X-badSY)<1/5\mathcal{P}(\pi \text{ is } X \text{-bad} \mid S_Y) < 1/5

Proof\textbf{Proof}. By the definition of (1), we know that p1(π)2ϵnp_{1}(\pi) \geq 2^{-\epsilon n} (otherwise, bad events will not happen and it is proved).

Recall that X={X:X[n],X=t,XSX{i}}X = \{\mathcal{X}: \mathcal{X}\subseteq [n], \lvert \mathcal{X}\rvert=t, \mathcal{X}\subseteq S_\mathcal{X} \cup {\color{red} \{i\}}\}.

We define X={X:X[n],X=t,XSX}X' = \{\mathcal{X}: \mathcal{X}\subseteq [n], \lvert \mathcal{X}\rvert=t, \mathcal{X}\subseteq S_\mathcal{X} \cup {\color{red}\emptyset} \}.

Let us select ss uniformly at random in XX, then we have

P[i∉X]=XX\mathcal{P}[i\not \in X] = \frac{\lvert X'\lvert }{\lvert X\rvert}

Thus,

pX0(π)=P[XXSY,i∉X]=X(2t1t)=XXp(π)2=2p(π)P[i∉s]p_{X_0}(\pi) =\mathcal{P}[ X\in \mathbb{X} \mid S_Y, i\not \in X]\\ =\frac{\lvert X' \rvert}{2t-1 \choose t} = \frac{\lvert X' \rvert}{\lvert X \rvert} p(\pi)\cdot 2\\ =2p(\pi)\mathcal{P} [i\not \in s]

where s=XXs = X \in \mathbb{X} under π\pi.

Similarly, we get that

pX1(π)=2p(π)P[is]p_{X_1}(\pi) = 2p(\pi)\mathcal{P} [i \in s]

Combining with the definition of XX-bad, we get that

P[is]<13P[i∉s]2ϵn2p(π)\mathcal{P}[i\in s] < \frac{1}{3}\mathcal{P}[i\not \in s] - \frac{2^{-\epsilon n}}{2p(\pi)}

So, P(is)<1/4. (3) \color{blue} \mathcal{P}(i\in s) < 1/4. \text{ (3) }

Now let {i1,,i2t}\{i_1,\ldots,i_{2t}\} denote [n]SY[n]\setminus S_Y and let s={s1,,s2t}\textbf{s}=\{s_1,\ldots,s_{2t}\}. We say that sj=1s_j = 1 if ijsi_j \in s.

We prove this cliam by contradiction. Suppose that the bad event happens with probability at least 1/5. So, 1/5 of {s1,,s2t}\{s_1,\ldots,s_{2t}\} is XX-bad, which corresponds to ii). For the remaining, it corresponds to i).

Consider s\textbf{s}, we compute its entropy as follows.

H(s)=H(s1,,s2t)i=12tH(si)2t5H(1/4)+8t5H(1/2)<1.93t\textbf{H(s)}=\textbf{H}(s_1,\ldots,s_{2t})\leq \sum_{i=1}^{2t} \textbf{H}(s_i) \\\leq \frac{2t}{5}\textbf{H}(1/4) + \frac{8t}{5}\textbf{H}(1/2) < 1.93 t

On the other hand,

H(s)=logXlog(p(π)(2tt))log(2δn(2tt))log(22tct2δn)=t(24δo(1))\textbf{H(s)} = \log \lvert X\rvert \geq \log\big( p(\pi) {2t \choose t}\big) \leq \log \big( 2^{-\delta n} {2t \choose t}\big)\\ \geq \log \big( \frac{2^{2t}}{c\sqrt{t}} 2^{-\delta n}\big) = t(2-4\delta - o(1))

By selecting δ\delta to be very small, there is a contradiction. So, Claim 1.1 is proved.

Finally, we can prove Claim 1.

Since Bad(π)BadX(π)+BadY(π)Bad(\pi) \leq Bad_X(\pi) + Bad_Y(\pi), we only need to prove Eπ[pX0(π)pY0(π)BadX(π)]25ET[pX0(π)pY0]\mathbb{E}_\pi[p_{X_0}(\pi)p_{Y_0}(\pi)Bad_X(\pi)] \leq \frac{2}{5}\mathbb{E}_T[p_{X_0}(\pi)p_{Y_0}] by symmetry.

When fixing SYS_Y, we fix SX{i}S_X\cup \{i\}. Therefore, we fix p(π)p(\pi) (because SX{i}\color{blue} S_X\cup \{i\} is fixed ) and pY0(π)p_{Y_0}(\pi) (because SY{no i=}=SY\color{blue} S_Y \cup {\{\text{no } i = \emptyset}\} = S_Y).

It is sufficient to prove Claim 1 by looking the probability for each SYS_Y,

Eπ[pX0(π)pY0(π)BadX(π)SY]=cEπ[pX0(π)BadX(π)SY]2cEπ[p(π)BadX(π)SY]=2crE[BadX(π)SY]=2crP[BadX(π)=1SY]2cr5=25cEπ[p(π)SY]25cEπ[pX0(π)SY]=25E[pX0(π)pY0(π)SY]\mathbb{E}_\pi[p_{X_0}(\pi)p_{Y_0}(\pi)Bad_X(\pi) \mid S_Y]\\ =c\cdot \mathbb{E}_\pi[p_{X_0}(\pi)Bad_X(\pi) \mid S_Y]\\ \leq 2c\mathbb{E}_\pi[p(\pi)Bad_X(\pi) \mid S_Y]\\ =2cr\mathbb{E}[Bad_X(\pi)\mid S_Y]\\ =2cr\mathcal{P}[Bad_X(\pi)=1\mid S_Y]\\ \leq \frac{2cr}{5}\\ =\frac{2}{5}c \mathbb{E}_\pi[p(\pi) \mid S_Y]\\ \frac{2}{5}c \mathbb{E}_\pi[p_{X_0}(\pi) \mid S_Y]\\ =\frac{2}{5}\mathbb{E}[p_{X_0}(\pi)p_{Y_0}(\pi) \mid S_Y]

So, we prove Claim 1.1.

Reference

[1]. Razborov, Alexander A. “On the distributional complexity of disjointness.” International Colloquium on Automata, Languages, and Programming. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990.

[2]. Kushilevitz, E. and Nisan, N. (1996). Communication Complexity. Cambridge.