Reminder: This post contains 591 words
· 2 min read
· by Xianbin
Parseval’s Inequality
Let A={u1,…,un} be an orthonormal basis for an inner-product space S, and let x=∑iξiui be the Fourier expansion of x∈S. Prove that
i=1∑n∣ξi∣2=∥x∥2
Proof.
∥x∥2=∥ξ1u1+…+ξnun∥2=i∑n∥ξiui∥2=i∑n∣ξi∣
Now, let us prove Equality 2.
∥ξ1u1+…+ξnun∥2=i=1∑n(ξiui)⋅(ξui)⊺+i∑Πi=jξiξjuiuj=i∑n∥ξiui∥2