Toolbox

T1: A Simple Question 2: Parseval's Inequality

Reminder: This post contains 591 words · 2 min read · by Xianbin

Parseval’s Inequality

Let A={u1,,un}A = \{u_1,\ldots,u_n\} be an orthonormal basis for an inner-product space SS, and let x=iξiui\textbf{x} = \sum_i \xi_i u_i be the Fourier expansion of xS\textbf{x} \in S. Prove that

i=1nξi2=x2\sum_{i=1}^n \lvert \xi_i\rvert^2 = \lVert \textbf{x} \rVert^2

Proof\textbf{Proof}.

x2=ξ1u1++ξnun2=inξiui2=inξi\begin{align} \lVert \textbf{x} \rVert^2 = \lVert \xi_1u_1+\ldots+\xi_n u_n\lVert^2 \\ =\sum_i^n\lVert \xi_i u_i\rVert^2 \\= \sum_i^n \lvert \xi_i \rvert \end{align}

Now, let us prove Equality 2.

ξ1u1++ξnun2=i=1n(ξiui)(ξui)+iΠijξiξjuiuj=inξiui2\lVert \xi_1u_1+\ldots+\xi_n u_n\lVert^2 =\sum_{i=1}^n (\xi_i u_i)\cdot (\xi u_i)^\intercal + \sum_i \Pi_{i\neq j} \xi_i \xi_j u_i u_j = \sum_i^n\lVert \xi_i u_i\rVert^2