Toolbox

T1: Discrepancy (1)

Reminder: This post contains 4188 words · 12 min read · by Xianbin

Discrepancy is a very important technique for lower bound proof in communication complexity.

Definitions

We give the definition with respect to communication complexity.

Given a function f:X×Y{0,1}f: X \times Y \to \{0,1\}, and let μ\mu be a distribution over X×YX \times Y. Let RX×YR \subseteq X \times Y be a rectangle.

discμ(f,R)=μ(Rf1(0))μ(Rf1(1)disc_\mu(f, R) = \lvert \mu(R\cap f^{-1}(0) )- \mu(R\cap f^{-1}(1)\rvert

Basically, it means the gap of the number of zeros and ones in the rectangle RR.

We define

discμ(f)=maxRdiscμ(f,R)disc_\mu(f) = \max_{R} disc_\mu(f,R)

Theorem\textbf{Theorem}. Dμϵ(f)log12ϵdiscμ(f)D^\epsilon_\mu(f) \geq \log \frac{1-2\epsilon}{disc_\mu(f)}

Proof\textbf{Proof}. Let us pause for a few moments. How to prove such a thing?

Suppose Dμϵ(f)=cD^\epsilon_\mu(f) = c, then, we need to prove

discμ(f)12ϵ2cdisc_\mu(f) \geq \frac{1-2\epsilon}{2^c}

That is to prove

maxRμ(Rf1(0))μ(Rf1(1)12ϵ2c\max_{R} \lvert \mu(R\cap f^{-1}(0) )- \mu(R\cap f^{-1}(1)\rvert \geq \frac{1-2\epsilon}{2^c}

We only need to compute the value of discμ(f)disc_\mu(f) under the condition that the error of the protocol with Dμϵ(f)D^\epsilon_\mu(f) at most ϵ\epsilon. Recall that we say that a deterministic protocol Π\Pi has error ϵ\epsilon, which means that

P[f(x,y)=Π(x,y)]1ϵ;P[f(x,y) = \Pi(x,y)] \geq 1-\epsilon;

and

P[f(x,y)Π(x,y)]ϵ;P[f(x,y) \neq \Pi(x,y)] \leq \epsilon;

Therefore, the “discrepancy” is,

P[f(x,y)=Π(x,y)]P[f(x,y)Π(x,y)]12ϵ\big \lvert P[f(x,y) = \Pi(x,y)] - P[f(x,y) \neq \Pi(x,y)] \big \rvert \geq 1-2\epsilon

Since the length of the protocol Π\Pi is cc, there are at most 2c2^c rectangles partitioned in X×YX \times Y.

P[Π(x,y)=f(x,y)]=i=1tP[(x,y)Rif(x,y)=ei]P[\Pi(x,y) = f(x,y)] = \sum_{i=1}^{t}P[(x,y)\in R_i \land f(x,y) = e_i]

where ei{0,1}e_i\in \{0,1\}.

Then, we obtain that

i=1tP[(x,y)Rif(x,y)=ei]i=1tP[(x,y)Rif(x,y)=(1ei)]12ϵ\big \lvert \sum_{i=1}^{t}P[(x,y)\in R_i \land f(x,y) = e_i] - \sum_{i=1}^{t}P[(x,y)\in R_i \land f(x,y) = (1-e_i)]\big \rvert \geq 1-2\epsilon P[(x,y)Rif(x,y)=ei]P[(x,y)Rif(x,y)=(1ei)]12ϵi=1t12ϵ2c\big \lvert P[(x,y)\in R_i \land f(x,y) = e_i] - P[(x,y)\in R_i \land f(x,y) = (1-e_i)]\big \rvert \geq \frac{1-2\epsilon}{\sum_{i=1}^{t}} \geq \frac{1-2\epsilon}{2^c}

Then,

μ(Rif1(ei))μ(Rif1(1ei))12ϵ2c\big \lvert \mu(R_i\cap f^{-1}(e_i)) - \mu(R_i\cap f^{-1}(1-e_i)) \big \rvert \geq \frac{1-2\epsilon}{2^c}

Then,

μ(Rif1(ei))μ(Rif1(1ei))=μ(Rif1(0))μ(Rif1(1))12ϵ2c\big \lvert \mu(R_i\cap f^{-1}(e_i)) - \mu(R_i\cap f^{-1}(1-e_i)) \big \rvert = \big \lvert \mu(R_i\cap f^{-1}(0)) - \mu(R_i\cap f^{-1}(1)) \big \rvert \geq \frac{1-2\epsilon}{2^c}

So, it is proved.

The Eigenvalue Method

Let us introduce the sign matrix.

Mf[x,y]=(1)f(x,y)={1f(x,y)=1;1f(x,y)=0.M_f[x,y] = (-1)^{f(x,y)} = \begin{cases} -1 && f(x,y) = 1;\\ 1 && f(x,y) = 0. \end{cases}

Because SfS_f is symmetric, there are some properties:

  1. Mf\lVert M_f \rVert is the absolute value fo the largest eigenvalue of MfM_f.

Lemma\textbf{Lemma}. Let ff be a symmetric boolean function such that f(x,y)=f(y,x)f(x,y) = f(y,x), we have

disc(f,A×B)22nλmaxAB.\text{disc}(f, A\times B) \leq 2^{-2n}\lambda_{max}\sqrt{\lvert A \rvert \cdot \lvert B \rvert}.

where n=x=yn = \lvert x \rvert = \lvert y \rvert is the input size, and λmax\lambda_{max} is the largest eigenvalue of the matrix MfM_f.

Proof\textbf{Proof}.

A(100101101)BA \left ( \begin{matrix} 1 & 0 & \cdots & 0\\ 1 & 0 & \cdots & 1\\ \vdots &&&\vdots \\ 1 & 0 & \cdots & 1 \end{matrix} \right)\\ B

Let 1A,1B{0,1}2n\textbf{1}_A, \textbf{1}_B \in \{0,1\}^{2^n} be the characteristic vectors of the sets AA and BB. Intuitively speaking, 1A(1B)\textbf{1}_A (\textbf{1}_B) indicates which rows (columns) have elements.

Then, we have

aA,bBMab=1AMf1B\sum_{a\in A, b\in B} M_{ab} = \textbf{1}_A^\intercal M_f \textbf{1}_B

We define A=aA12\lvert A \rvert = \sum_{a\in A} 1^2

Since MfM_f is symmetric, by the spectral theorem, its eigenvectors v1,,v2nv_1, \ldots, v_{2^n} are orthonormal basic for R2n\mathbb{R}^{2^n}. Let λi\lambda_i be corresponding eigenvalues. We have

Mfvi=λiviM_f v_i = \lambda_i v_i

Since RR is a rectangle, we can expand the characteristic vectors of AA and BB in the basis: (if you do not understand this, please see this post).

1A=αivi,1B=βivi\textbf{1}_A = \sum \alpha_i v_i, \\ \textbf{1}_B = \sum \beta_i v_i

Then, we have

22ndisc(f,A×B)=Mab=1AMf1B=(αivi)Mfβivi=(αivi)βiλivi=αiβiλiλmaxαiβi2^{2n}\text{disc}(f, A\times B) = \sum \lvert M_{ab} \rvert = \lvert \textbf{1}_A M_f \textbf{1}_B \rvert \\ =\left \lvert (\sum \alpha_i v_i)^\intercal M_f \sum \beta_i v_i\right\rvert\\ =\left \lvert (\sum \alpha_i v_i)^\intercal \sum \beta_i \lambda_i v_i\right\rvert\\ =\left \lvert \sum \alpha_i \beta_i \lambda_i \right \rvert \\ \leq \lambda_{max} \left \lvert \sum \alpha_i \beta_i \right \rvert

By Parseval’s identity (see this post), we have

αi2=1A2=Aβi2=B\sum \alpha_i^2 = \lVert \textbf{1}_A \rVert^2 = \lvert A \rvert \\ \sum \beta_i^2 = \lvert B \rvert

Then,

αiβiαi2βi2=AB\left \lvert \sum \alpha_i \beta_i \right \rvert \leq \sqrt{\left \lvert \sum \alpha_i^2\right \rvert} \sqrt{\left \lvert \sum \beta_i^2\right \rvert} = \sqrt{\lvert A \rvert \cdot \lvert B \rvert}

So, we finish the proof.

Reference

[1]. CS 2429 - Foundations of Communication Complexity, Toniann Pitassi

[2]. T1: A Simple Question 2: Parseval’s Inequality